8
Résolution d'équations
Ce chapitre indique comment trouver un zéro et un minimum pour
l'expression que vous avez représentée graphiquement au chapitre
précédent. Vous aurez besoin de certains des résultats de ce chapitre;
suivez donc pas à pas les étapes du chapitre 7 si vous ne l'avez pas
encore fait.
La section
«
SOLVE
»
du Manuel de référence décrit en détail
l'algorithme de résolution d'équation.
Recherche du zéro d'une expression
L'exemple suivant suppose que l'expression
x
3 -
x
2 -
X
+
3 est tou-
jours l'équation en cours et que vous avez créé la variable PPARl,
comme décrit au chapitre précédent. Vous allez tracer à nouveau l'ex-
pression, numériser une approximation pour un zéro de l'expression
et utiliser l'algorithme de résolution d'équation pour trouver une va-
leur plus précise de x pour ce zéro.
Avant de commencer ces exemples, effacez la pile, sélectionnez le
mode Radians et l'affichage FIX 2 .
•
1
CLEAR
1
1
3
:
1
~I
MODE
l~mam:lll1:DllDBma
Eliminez toute variable PPAR existante de façon à vous assurer que le
tracé suivant utilisera les paramètres par défaut .
c::::J
.1
PURGE
1
2~
•
1
PLOT
Il
NEXT
I l
r::
3
,-·------------,1
~DBr:mBtmmlmlllDlll
98
8 : Résolution d'équations