The Extra "Tweak; Room Acoustics; Your Room; Terminology - Martin Logan ElectroMotion ESL Manuel De L'utilisateur

Table des Matières

Publicité

Les langues disponibles

Les langues disponibles

Once you have determined the best of all three
of these considerations, you will have your best
speaker location.

the extRA "tWeAk"

This extra "tweak" may be useful when your
speakers are placed in a dedicated listening room.
Use the following procedure and measurements
for your speakers placement to see what can
happen to your system's performance. These
formulas will help determine optimum placement
of your speakers to minimize standing waves.
1 Distance from the front wall (in front of the
r
a
oom
coustIcs

YouR Room

This is one of those areas that requires both a little
background to understand and some time and
experimentation to obtain the best performance
from your system.
Your room is actually a component and an important
part of your system. It can dramatically add to, or
subtract from, a great musical experience.
All sound is composed of waves. Each note
has its own wave size, with the lower bass
notes literally encompassing from 10' feet to as
much as 40' feet. Your room participates in this
wave experience like a three dimensional pool
with waves reflecting and becoming enhanced
depending on the size of the room and the types
of surfaces in the room. Remember, your audio
system can literally generate all of the information
required to recreate a musical event in time,
space, and tonal balance. Ideally, your room
should not contribute to that information. However,
every room does contribute to the sound to some
degree. Fortunately MartinLogan had designed the
EM-ESL to minimize these anomalies
listening position) to the center of the curvilinear
transducer: To determine distance from the front
wall, measure the ceiling height (inches) and
multiply the figure by 0.618 (i.e. ceiling height
(inches) x 0.618 = the distance from the front
wall to the center of the curvilinear transducer).
2 Distance from the side-walls to the center of the
curvilinear transducer: To determine distance
from the side walls, measure the width of
your room in inches and divide by 18. Next,
multiply the quotient by 5 (i.e. room width in
inches / 18 x 5 = the distance from the side-
walls to the center of the curvilinear transducer).

teRmINoLoGY

Standing Waves
The parallel walls in your room will reinforce
certain notes to the point that they will sound louder
than the rest of the audio spectrum and cause "one
note bass", "boomy bass" or "bloated bass". For
instance, 100Hz represents a 10 feet wavelength.
Your room will reinforce that specific frequency if
one of the dominant dimensions is 10 feet. Large
objects in the room such as cabinetry or furniture
can help to minimize this potential problem. Some
serious "audiophiles" will literally build a special
room with no parallel walls just to help eliminate
this phenomenon.
Reflective Surfaces (near-field reflections)
The hard surfaces of your room, particularly if close
to your speaker system, will reflect some waves
back into the room over and over again, confusing
the clarity and imaging of your system. The smaller
sound waves are mostly affected here, and occur in
the mid and high frequencies. This is where voice
and frequencies as high as the cymbals occur.
11

Publicité

Chapitres

Table des Matières
loading

Table des Matières